Objective: Tests requiring central auditory processing, such as speech perception-in-noise, are simple, time efficient, and correlate with cognitive processing. These tests may be useful for tracking brain function. Doing this effectively requires information on which tests correlate with overall cognitive function and specific cognitive domains. This study evaluated the relationship between selected central auditory focused tests and cognitive domains in a cohort of normal hearing adults living with HIV and HIV- controls. The long-term aim is determining the relationships between auditory processing and neurocognitive domains and applying this to analyzing cognitive function in HIV and other neurocognitive disorders longitudinally. Method: Subjects were recruited from an ongoing study in Dar es Salaam, Tanzania. Central auditory measures included the Gap Detection Test (Gap), Hearing in Noise Test (HINT), and Triple Digit Test (TDT). Cognitive measures included variables from the Test of Variables of Attention (TOVA), Cogstate neurocognitive battery, and Kiswahili Montreal Cognitive Assessment (MoCA). The measures represented three cognitive domains: processing speed, learning, and working memory. Bootstrap resampling was used to calculate the mean and standard deviation of the proportion of variance explained by the individual central auditory tests for each cognitive measure. The association of cognitive measures with central auditory variables taking HIV status and age into account was determined using regression models. Results: Hearing in Noise Tests and TDT were significantly associated with Cogstate learning and working memory tests. Gap was not significantly associated with any cognitive measure with age in the model. TDT explained the largest mean proportion of variance and had the strongest relationship to the MoCA and Cogstate tasks. With age in the model, HIV status did not affect the relationship between central auditory tests and cognitive measures. Age was strongly associated with multiple cognitive tests. Conclusion: Central auditory tests were associated with measures of learning and working memory. Compared to the other central auditory tests, TDT was most strongly related to cognitive function. These findings expand on the association between auditory processing and cognitive domains seen in other studies and support evaluating these tests for tracking brain health in HIV and other neurocognitive disorders.
Keywords: Africa South of the Sahara; HIV; attention; auditory disease; central auditory processing; cognition; cognitive processing speed.
Copyright © 2021 Niemczak, Lichtenstein, Magohe, Amato, Fellows, Gui, Huang, Rieke, Massawe, Boivin, Moshi and Buckey.