Two-dimensional numerical studies of particle motion and deposition in the channel of diesel particulate filters

R Soc Open Sci. 2021 Oct 13;8(10):211162. doi: 10.1098/rsos.211162. eCollection 2021 Oct.

Abstract

A numerical investigation on the soot laden flow of gas in a partial diesel particulate filter (PDPF) is presented based on solving the momentum equations for a continuous phase in the Euler frame and the motion equations for the dispersed phase in the Lagrangian frame. The interaction between the gas phase and the particles is considered as a one-way coupling for dilute particle concentration, while the interaction between particles and porous wall is implemented through user-definedsubroutines. To accurately track motion of nanoscale particles, the Brownian excitation and drag force as well as partial slip are taken into account in the particulate motion equation. Two methods are used to verify the gas flow model and reasonable agreements for both comparisons are observed. The effects of inlet velocity, wall permeability and particle size on the filtration efficiency and deposition distribution of the particles along with wall surface of inlet channel are quantitatively studied. The results show that (i) wall permeability plays the primary role in determining the filtration efficiency of PDPF, (ii) both upstream velocity and particle size have an effect on the initial deposition position of particles and (iii) filtration efficiency of PDPF is not markedly proportional to gas flow into inlet channels at a low wall permeability.

Keywords: deposition distribution; filtration efficiency; numerical study; partial diesel particulate filter.

Associated data

  • Dryad/10.5061/dryad.pnvx0k6n4