Loading with micro-nanosized α-MnO2 efficiently promotes the removal of arsenite and arsenate by biochar derived from maize straw waste: Dual role of deep oxidation and adsorption

Sci Total Environ. 2022 Feb 10;807(Pt 3):150994. doi: 10.1016/j.scitotenv.2021.150994. Epub 2021 Oct 15.

Abstract

The function of biochar (BC) as an eco-friendly adsorbent for environmental remediation is gaining much attention. However, the pristine BC had limited abilities for the removal of As (III, V). Towards this issue, this study synthesized biochar/micro-nanosized α-MnO2 (BM) composites with different mass ratios of biochar to MnO2. Comprehensive characterizations confirmed the successful loading of micro-nanosized α-MnO2 onto the BC surface and the obvious specific surface area enhancement (7.5-13.5 times) of BM relative to BC. BM composites exhibited 5.0-13.0 folds higher removal capacity for As (III, V) than pristine BC since the composites gave full play to the oxidation contributed by micro-nanosized α-MnO2 substrate and adsorption functions provided by the Mn-OH, BC-COOH, and BC-OH functional groups. Moreover, BM was well reused maintaining a relatively high removal efficiency for As (III, V). Regardless of reaction time and initial As (III) concentration (C0), the removal of As (III) by pristine BC was negligibly contributed by the oxidized As (V) remaining in solutions, with the relative contribution <15.0%. For the BM composites, relative contribution of adsorbed As (III, V) dominated over that of oxidation to mobile As (V) remaining in solution, and exhibited the decreasing trend with increasing C0. These findings demonstrated BM as a promising candidate in remediating As (III, V)-polluted water, and provide mechanistic insights into the role of oxidation and adsorption in As (III, V) removal.

Keywords: Adsorption; Arsenic removal; Biochar; Micro-nanosized α-MnO(2); Oxidation.

MeSH terms

  • Adsorption
  • Arsenates*
  • Arsenites*
  • Charcoal
  • Manganese Compounds
  • Oxides
  • Zea mays

Substances

  • Arsenates
  • Arsenites
  • Manganese Compounds
  • Oxides
  • biochar
  • Charcoal