Chalcone embedded polyurethanes as a biomaterial: Synthesis, characterization and antibacterial adhesion

Carbohydr Polym. 2012 Jan 4;87(1):353-360. doi: 10.1016/j.carbpol.2011.07.061. Epub 2011 Aug 5.

Abstract

An antibacterial dimethylamino-chalcone embedded multiblock copolymer (PCL-PEG) was synthesized and characterized using FT-IR, 1H NMR, SEM and SEC and the compound was characterized using FT-IR, 1H NMR, and 13C NMR. A 10% copolymer composite was prepared and casted as film to be used as a biomaterial and the copolymer films without the compound acted as control. TGA, DSC, AFM, SEM and EDAX analysis were performed for the above samples. Surface roughness (Ra) of the copolymer composite film was less when compared to the copolymer film which indicated the proper distribution of chalcone in the composite film. copolymer composite film was hydrophilic compared to copolymer film. Antibacterial adhesion studies were performed for copolymer composite polymer film and evaluated using CFU measurement and SEM analysis. Copolymer composite film shows promising antibacterial adhesion compared to the copolymer film. Hence the copolymer composite film can be used as a new biomaterial endowed with antibacterial properties.

Keywords: AFM; Bacterial adhesion; Chalcone; Polyurethane; SEM EDAX.