This study evaluates the future climate fluctuations in Iran's eight major climate regions (G1-G8). Synoptic data for the period 1995-2014 was used as the reference for downscaling and estimation of possible alternation of precipitation, maximum and minimum temperature in three future periods, near future (2020-2040), middle future (2040-2060), and far future (2060-2080) for two shared socioeconomic pathways (SSP) scenarios, SSP119 and SSP245. The Gradient Boosting Regression Tree (GBRT) ensemble algorithm has been utilized to implement the downscaling model. Pearson's correlation coefficient (CC) was used to assess the ability of CMIP6 global climate models (GCMs) in replicating observed precipitation and temperature in different climate zones for the based period (1995-2014) to select the most suitable GCM for Iran. The suitability of 21 meteorological variables was evaluated to select the best combination of inputs to develop the GBRT downscaling model. The results revealed GFDL-ESM4 as the most suitable GCM for replicating the synoptic climate of Iran for the base period. Two variables, namely sea surface temperature (ts) and air temperature (tas), are the most suitable variable for developing a downscaling model for precipitation, while ts, tas, and geopotential height (zg) for maximum temperature, and tas, zg, and sea level pressure (psl) for minimum temperature. The GBRT showed significant improvement in downscaling GCM simulation compared to support vector regression, previously found as most suitable for the downscaling climate in Iran. The projected precipitation revealed the highest increase in arid and semi-arid regions (G1) by an average of 144%, while a declination in the margins of the Caspian Sea (G8) by -74%. The projected maximum temperature showed an increase up to +8°C in highland climate regions. The minimum temperature revealed an increase up to +4°C in the Zagros mountains and decreased by -4°C in different climate zones. The results indicate the potential of the GBRT ensemble machine learning model for reliable downscaling of CMIP6 GCMs for better projections of climate.
Keywords: Climate change projections; Climate downscaling; Global climate model; Gradient Boosting Regression Tree; Shared socioeconomic pathways scenarios.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.