In this study, the associations of cervical and lumbar paraspinal musculature based on a texture analysis of proton density fat fraction (PDFF) maps were investigated to identify gender- and anatomical location-specific structural patterns. Seventy-nine volunteers (25 men, 54 women) participated in the present study (mean age ± standard deviation: men: 43.7 ± 24.6 years; women: 37.1 ± 14.0 years). Using manual segmentations of the PDFF maps, texture analysis was performed and texture features were extracted. A significant difference in the mean PDFF between men and women was observed in the erector spinae muscle (p < 0.0001), whereas the mean PDFF did not significantly differ in the cervical musculature and the psoas muscle (p > 0.05 each). Among others, Variance(global) and Kurtosis(global) showed significantly higher values in men than in women in all included muscle groups (p < 0.001). Not only the mean PDFF values (p < 0.001) but also Variance(global) (p < 0.001), Energy (p < 0.001), Entropy (p = 0.01), Homogeneity (p < 0.001), and Correlation (p = 0.037) differed significantly between the three muscle compartments. The cervical and lumbar paraspinal musculature composition seems to be gender-specific and has anatomical location-specific structural patterns.
Keywords: magnetic resonance imaging; muscle composition; paraspinal muscle; proton density fat fraction; quantitative imaging; texture analysis.