Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved rapidly, leading to viral lineages characterized by multiple mutations in the spike protein, which could potentially confer to the virus the ability to avoid the vaccine-induced immune response, making the vaccines less effective or ineffective. Here, we initially evaluated the neutralization capabilities in vitro by serum neutralization (SN) of six serum samples collected from recipients of the BNT162b2 vaccine against 11 SARS-CoV-2 isolates belonging to the major SARS-CoV-2 lineages that had been circulating in Italy. Then, we considered 30 additional serum samples by SN assay against the dominant B.1.617.2 (Delta) variant. A B.1 lineage isolate was used as a reference. In the first analysis, significant differences when compared with the reference strain (p > 0.05) were not evidenced; instead, when the panel of 30 sera was tested against the B.1.617.2 (Delta) variant, a significant (p = 0.0015) 2.38-fold reduction in neutralizing titres compared with the reference after the first vaccine dose was demonstrated. After the second vaccine dose, the reduction was not significant (p = 0.1835). This study highlights that the BNT162b2 vaccine stimulates a humoral response able to neutralize all tested SARS-CoV-2 variants, thus suggesting a prominent role in mitigating the impact of the SARS-CoV-2 pandemic in real-world conditions. Long-term follow-up is currently ongoing.
Keywords: B.1.617.2 (Delta) variant; SARS-CoV-2; cells; neutralization; variants; viruses.