A deep-learning method for generating synthetic kV-CT and improving tumor segmentation for helical tomotherapy of nasopharyngeal carcinoma

Phys Med Biol. 2021 Nov 11;66(22). doi: 10.1088/1361-6560/ac3345.

Abstract

Objective:Megavoltage computed tomography (MV-CT) is used for setup verification and adaptive radiotherapy in tomotherapy. However, its low contrast and high noise lead to poor image quality. This study aimed to develop a deep-learning-based method to generate synthetic kilovoltage CT (skV-CT) and then evaluate its ability to improve image quality and tumor segmentation.Approach:The planning kV-CT and MV-CT images of 270 patients with nasopharyngeal carcinoma (NPC) treated on an Accuray TomoHD system were used. An improved cycle-consistent adversarial network which used residual blocks as its generator was adopted to learn the mapping between MV-CT and kV-CT and then generate skV-CT from MV-CT. A Catphan 700 phantom and 30 patients with NPC were used to evaluate image quality. The quantitative indices included contrast-to-noise ratio (CNR), uniformity and signal-to-noise ratio (SNR) for the phantom and the structural similarity index measure (SSIM), mean absolute error (MAE), and peak signal-to-noise ratio (PSNR) for patients. Next, we trained three models for segmentation of the clinical target volume (CTV): MV-CT, skV-CT, and MV-CT combined with skV-CT. The segmentation accuracy was compared with indices of the dice similarity coefficient (DSC) and mean distance agreement (MDA).Mainresults:Compared with MV-CT, skV-CT showed significant improvement in CNR (184.0%), image uniformity (34.7%), and SNR (199.0%) in the phantom study and improved SSIM (1.7%), MAE (24.7%), and PSNR (7.5%) in the patient study. For CTV segmentation with only MV-CT, only skV-CT, and MV-CT combined with skV-CT, the DSCs were 0.75 ± 0.04, 0.78 ± 0.04, and 0.79 ± 0.03, respectively, and the MDAs (in mm) were 3.69 ± 0.81, 3.14 ± 0.80, and 2.90 ± 0.62, respectively.Significance:The proposed method improved the image quality of MV-CT and thus tumor segmentation in helical tomotherapy. The method potentially can benefit adaptive radiotherapy.

Keywords: CycleGAN; cycle-consistent adversarial networks; deep learning; image quality; megavoltage CT; synthetic kilovoltage CT; tumor segmentation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deep Learning*
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Nasopharyngeal Carcinoma / diagnostic imaging
  • Nasopharyngeal Carcinoma / radiotherapy
  • Nasopharyngeal Neoplasms* / diagnostic imaging
  • Nasopharyngeal Neoplasms* / radiotherapy
  • Radiotherapy, Intensity-Modulated*
  • Tomography, X-Ray Computed