GCN2 adapts protein synthesis to scavenging-dependent growth

Cell Syst. 2022 Feb 16;13(2):158-172.e9. doi: 10.1016/j.cels.2021.09.014. Epub 2021 Oct 26.

Abstract

Pancreatic cancer cells with limited access to free amino acids can grow by scavenging extracellular protein. In a murine model of pancreatic cancer, we performed a genome-wide CRISPR screen for genes required for scavenging-dependent growth. The screen identified key mediators of macropinocytosis, peripheral lysosome positioning, endosome-lysosome fusion, lysosomal protein catabolism, and translational control. The top hit was GCN2, a kinase that suppresses translation initiation upon amino acid depletion. Using isotope tracers, we show that GCN2 is not required for protein scavenging. Instead, GCN2 prevents ribosome stalling but without slowing protein synthesis; cells still use all of the limiting amino acids as they emerge from lysosomes. GCN2 also adapts gene expression to the nutrient-poor environment, reorienting protein synthesis away from ribosomes and toward lysosomal hydrolases, such as cathepsin L. GCN2, cathepsin L, and the other genes identified in the screen are potential therapeutic targets in pancreatic cancer.

Keywords: Cathepsin L; GCN2; PDAC; lysosomes; macropinocytosis; protein scavenging; protein synthesis; translation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / metabolism
  • Animals
  • Cathepsin L / metabolism
  • Mice
  • Pancreatic Neoplasms* / genetics
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism

Substances

  • Amino Acids
  • Saccharomyces cerevisiae Proteins
  • Eif2ak4 protein, mouse
  • GCN2 protein, S cerevisiae
  • Protein Serine-Threonine Kinases
  • Cathepsin L