Phthalide and 1-Iodooctadecane Synergistic Optimization for Highly Efficient and Stable Perovskite Solar Cells

Small. 2021 Dec;17(50):e2103336. doi: 10.1002/smll.202103336. Epub 2021 Oct 27.

Abstract

The carrier non-radiative recombination and instability of device caused by the inherent defects are main factors limiting development of perovskite solar cells (PSCs). During the fabrication process of a PSC device, perovskite films often produce Pb0 and I0 defects. This paper reports a strategy for synergistic optimization of perovskite films by defects passivation and surface modification. The doping of phthalide (PT) in the Pb-rich (CH(NH2 )2 )1-x (CH3 NH3 )x PbI3 film can passivate lead cation defects, and the modification of 1-iodooctadecane (1-IO) can reduce halogen anion defects and improve stability of PSCs owing to its hydrophobicity. The PT and 1-IO optimized device achieves a power conversion efficiency (PCE) of 22.27%. The optimized PSCs remain 93.2% of the initial PCE when placed in air environment (relative humidity of 10%, 25 °C) more than 70 days. The PT and 1-IO synergistic optimization provides a novel strategy for improving the performance and stability of PSCs.

Keywords: Lewis acid-base; hydrophobicity; perovskite solar cells; stability; synergistic effect.