West Nile virus (WNV) and Usutu virus (USUV) are the two most widespread mosquito-borne flaviviruses in Europe causing severe neuroinvasive disease in humans. Here, following standardization of the murine model with wild type (wt) viruses, we engineered WNV and USUV genome by reverse genetics. A recombinant virus carrying the 5' UTR of WNV within the USUV genome backbone (r-USUV5'-UTR WNV) was rescued; when administered to mice this virus did not cause signs or disease as wt USUV suggesting that 5' UTR of a marked neurotropic parental WNV was not per se a virulence factor. Interestingly, a chimeric virus carrying the envelope (E) protein of USUV in the WNV genome backbone (r-WNVE-USUV) showed an attenuated profile in mice compared to wt WNV but significantly more virulent than wt USUV. Moreover, except when tested against serum samples originating from a live WNV infection, r-WNVE-USUV showed an identical antigenic profile to wt USUV confirming that E is also the major immunodominant protein of USUV.
Keywords: Chimeric WNV/USUV; Genome manipulation; Mice; Reverse genetics.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.