Continuous Energy Harvesting from Ubiquitous Humidity Gradients using Liquid-Infused Nanofluidics

Adv Mater. 2022 Jan;34(4):e2106410. doi: 10.1002/adma.202106410. Epub 2021 Dec 6.

Abstract

Humidity-based power generation that converts internal energy of water molecules into electricity is an emerging approach for harvesting clean energy from nature. Here it is proposed that intrinsic gradient within a humidity field near sweating surfaces, such as rivers, soil, or animal skin, is a promising power resource when integrated with liquid-infused nanofluidics. Specifically, capillary-stabilized ionic liquid (IL, Omim+ Cl- ) film is exposed to the above humidity field to create a sustained transmembrane water-content difference, which enables asymmetric ion-diffusion across the nanoconfined fluidics, facilitating long-term electricity generation with the power density of ≈12.11 µW cm-2 . This high record is attributed to the nanoconfined IL that integrates van der Waals and electrostatic interactions to block movement of Omim+ clusters while allowing for directional diffusion of moisture-liberated Cl+ . This humidity gradient triggers large ion-diffusion flux for power generation indicates great potential of sweating surfaces considering that most of the earth is covered by water or soil.

Keywords: clean energy; humidity; nanofluidics; slippery surfaces; sweating surfaces.