RBM6 splicing factor promotes homologous recombination repair of double-strand breaks and modulates sensitivity to chemotherapeutic drugs

Nucleic Acids Res. 2021 Nov 18;49(20):11708-11727. doi: 10.1093/nar/gkab976.

Abstract

RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use
  • Antineoplastic Agents / toxicity
  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Cell Line
  • Cisplatin / therapeutic use
  • Cisplatin / toxicity
  • DNA Breaks, Double-Stranded*
  • Drug Resistance, Neoplasm*
  • Female
  • HCT116 Cells
  • Homologous Recombination*
  • Humans
  • MCF-7 Cells
  • Mammary Neoplasms, Experimental / drug therapy
  • Mice
  • Mice, SCID
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Poly(ADP-ribose) Polymerases / metabolism
  • RNA Stability
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*
  • Triple Negative Breast Neoplasms / metabolism

Substances

  • APBB1 protein, human
  • Antineoplastic Agents
  • Nerve Tissue Proteins
  • Nuclear Proteins
  • RBM6 protein, human
  • RNA-Binding Proteins
  • Poly(ADP-ribose) Polymerases
  • ATM protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • Cisplatin