Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana

Plant Cell. 2022 Jan 20;34(1):433-454. doi: 10.1093/plcell/koab257.

Abstract

Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / physiology*
  • Cell Cycle Checkpoints*
  • Heat-Shock Response / physiology*
  • Meiosis
  • Pachytene Stage*