The binary compound of GeTe emerging as a potential medium-temperature thermoelectric material has drawn a great deal of attention. Here, we achieve ultralow lattice thermal conductivity and high thermoelectric performance in In and a heavy content of Cu codoped GeTe thermoelectrics. In dopants improve the density of state near the surface of Femi of GeTe by introducing resonant levels, producing a sharp increase of the Seebeck coefficient. In and Cu codoping not only optimizes carrier concentration but also substantially increases carrier mobility to a high value of 87 cm2 V-1 s-1 due to the diminution of Ge vacancies. The enhanced Seebeck coefficient coupled with dramatically enhanced carrier mobility results in significant enhancement of PF in Ge1.04-x-yInxCuyTe series. Moreover, we introduce Cu2Te nanocrystals' secondary phase into GeTe by alloying a heavy content of Cu. Cu2Te nanocrystals and a high density of dislocations cause strong phonon scattering, significantly diminishing lattice thermal conductivity. The lattice thermal conductivity reduced as low as 0.31 W m-1 K-1 at 823 K, which is not only lower than the amorphous limit of GeTe but also competitive with those of thermoelectric materials with strong lattice anharmonicity or complex crystal structures. Consequently, a high ZT of 2.0 was achieved for Ge0.9In0.015Cu0.125Te by decoupling electron and phonon transport of GeTe. This work highlights the importance of phonon engineering in advancing high-performance GeTe thermoelectrics.
Keywords: carrier concentration; lattice thermal conductivity; nanocrystals; resonant levels; thermoelectric materials.