Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day-1, P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.
Keywords: insulin sensitivity; mitochondria; physical inactivity; skeletal muscle; step reduction.