Determination of interactions of ferrihydrite-humic acid-Pb (II) system

Environ Sci Pollut Res Int. 2022 Mar;29(15):21561-21575. doi: 10.1007/s11356-021-17258-z. Epub 2021 Nov 11.

Abstract

Ferrihydrite often precipitates with humic acid in natural ways, affecting the fate of lead ions, the stabilization of humic acid, and the aging process of ferrihydrite. A series of 2-line ferrihydrite-humic (Fh-HA) acid with varying C loadings has been prepared, the morphology and surface properties of Fh-HA organo-minerals have been characterized, and the adsorption property of Pb ions onto Fh-HA has been studied. The results indicated that a strong interference of HA to ferrihydrite 2-line Fh dominated mineral phase in all samples, but with increasing C/Fe molar ratios, the crystallinity gradually weakened, particles became smaller, and SSA decreased significantly. The data of Mössbauer spectra confirmed C loadings changed the unit structure of ferrihydrite. Fh-HA performed good adsorption properties to Pb (II): high efficiency and big capacity, especially Fh-HA_2.0. pH had great effect on Pb (II) sorption, the pH change affects not only the amounts of competitive ions in solutions, but also the dissociation and protonation of functional groups on the surface of Fh-HA. Sorption kinetics can be well modeled by a pseudo-second-order model, and the process was controlled by film and intraparticle adsorption simultaneously. The adsorption isotherms can be well described by Freundlich isotherm model. The detailed determination results of Fe 2p, O 1 s, and Pb 4f spectra before and after lead adsorption showed mononuclear bidentate or binuclear bidentate ligands occurring on Fh-HA surface, forming stable inner-sphere complex. By comparison of Mössbauer spectra and TEM images, with aging time, a slower evolution of iron oxide/oxyhydroxide phases in Fh-HA-Pb system happened compared to pure ferrihydrite. Ferrihydrite has transformed to a combination of ferrihydrite, goethite, and hematite phases. In this study, the determination of C-Fe interaction, Pb fate influenced by Fh-HA, and transformation of ferrihydrite would have a great implication to application of Fh-HA precipitates in remediation for surface water or groundwater polluted by heavy metals.

Keywords: Ferrihydrite; Fh-HA precipitates; Humic acid; Lead; Mechanism; Transformation.

MeSH terms

  • Adsorption
  • Ferric Compounds / chemistry
  • Humic Substances*
  • Lead*
  • Organic Chemicals / chemistry

Substances

  • Ferric Compounds
  • Humic Substances
  • Organic Chemicals
  • Lead
  • ferric oxyhydroxide