Alzheimer's disease is a fatal illness associated with two persistent problems in treatment i. ineffective drug transportation across the bio-membranes and ii. on-site targeting. Such problems originate from the combinational factors for non-specific targets, physicochemical limitations in the delivery of the active agents and insignificant permeability across blood-brain-barrier. In this context, block copolymers such as PLGA-PEG, PEG-PLA, Poloxamers, PLGA-PEG-PLGA triblock copolymers, etc. present interesting potential in the development of nano-sized carrier systems like polymerosomes, polymeric micelles, etc. for the management and treatment of Alzheimer's disease. Modifications of block copolymers display improvement in solubility and reduction in toxicity due to the process of complexation, functionalization, dose reduction and modification of kinetics for the rate of release. This review article focuses on new insights into different copolymers and their superiority over conventional polymers in Alzheimer's disease for long-term therapy in the body. Association of block copolymers to therapy of Alzheimer's disease overcome the limitations of drug delivery by offering attributes such as smaller molecular size (less than 150 nm), higher solubility owing to hydrophilic interactions between polymeric components and systemic environment, better entrapment efficiency (above 80%) due to large effective surface area and long-term stability for sensitive actives such as peptides, monoclonal antibodies, curcumin, resveratrol, catechins, etc. With such multifunctional features, block copolymers actively permeate the bio-membrane as polymeric nanoparticles, nanomicelles and polymerosomes using different mechanisms such as transcellular- and receptor-mediated transportation to reach target neural network as well as extra-neuronal amyloid-β plaques for anti-Alzheimer's disease activity with neuroprotective action. These polymers emerge as important components for personalized therapy with potential applications in biosensing, drug delivery, theranostics, etc. for qualitative and quantitative predictions in the detection and treatment of Alzheimer's disease.
Keywords: Alzheimer's disease therapy; Amyloid-β plaques; Nanoparticles; Polymers.
Copyright © 2021 Elsevier B.V. All rights reserved.