The increase of multi-drug resistant and multi-serotypes of pathogenic Escherichia coli has brought more severe challenge to control infection. Nowadays, bacteriophage is a promising tool to treat colibacillosis as an alternative of antibiotics. A coliphage P479, isolated from sewage of poultry farm, could lyse multiple serotypes, including not only O1, O2, O8, O9, O21, O78, O83, O145 of Avian pathogenic E. coli, but O157:H7 of Enterohaemorrhagic E. coli and O18:K1:H7 Neonatal meningitis E. coli. Additionally, P479 could also lyse multi-drug resistant E. coli. These indicated that P479 had good lytic ability. One-step growth curve revealed that the latent time period of P479 was 10 min and the burst size was about 318 PFU/cell. Stability tests demonstrated that P479 had good stability under various temperature (4 to 50 °C) and pH (3 to11) conditions. P479 contained of a linear, double-stranded DNA molecule of 172,033 bp with 40.3% GC content. P479 contained 296 putative coding sequences (CDSs) and two tRNA genes. Based on genomic comparison, P479 was classified as a member of genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae, order Caudovirales. No known virulent or lysogenic genes were detected in the genome of P479, manifesting P479 was safe to adhibit. Antibacterial activity in vitro manifested that P479 has varying degrees bacteriostatic activity against different bacteria. According to the above properties, P479 has the potential to be applied in phage therapy in the future.
Keywords: Bacteriophage; Broad lytic spectrum; E. coli; Genome sequencing; Multiple drug resistance; Serotypes.
Copyright © 2021 Elsevier B.V. All rights reserved.