Simultaneous comprehensive liver T1 , T2 , T2 , T , and fat fraction characterization with MR fingerprinting

Magn Reson Med. 2022 Apr;87(4):1980-1991. doi: 10.1002/mrm.29089. Epub 2021 Nov 18.

Abstract

Purpose: To develop a novel simultaneous co-registered T1 , T2 , T2 , T , and fat fraction abdominal MR fingerprinting (MRF) approach for fully comprehensive liver-tissue characterization in a single breath-hold scan.

Methods: A gradient-echo liver MRF sequence with low fixed flip angle, multi-echo radial readout, and varying magnetization preparation pulses for multiparametric encoding is performed at 1.5 T. The T2 and fat fraction are estimated from a graph/cut water/fat separation method using a six-peak fat model. Water/fat singular images obtained are then matched to an MRF dictionary, estimating water-specific T1 , T2 , and T . The proposed approach was tested in phantoms and 10 healthy subjects and compared against conventional sequences.

Results: For the phantom studies, linear fits show excellent coefficients of determination (r2 > 0.9) for every parametric map. For in vivo studies, the average values measured within regions of interest drawn on liver, spleen, muscle, and fat are statistically different from the reference scans (p < 0.05) for T1 , T2 , and T1⍴ but not for T2 and fat fraction, whereas correlation between MRF and reference scans is excellent for each parameter (r2 > 0.92 for every parameter).

Conclusion: The proposed multi-echo inversion-recovery, T2 , and T1⍴ prepared liver MRF sequence presented in this work allows for quantitative T1 , T2 , T2 , T1⍴ , and fat fraction liver-tissue characterization in a single breath-hold scan of 18 seconds. The approach showed good agreement and correlation with respect to reference clinical maps.

Keywords: T2 mapping; T1 mapping; T1⍴ mapping; T2 mapping; liver MRI; magnetic resonance fingerprinting; multiparametric.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breath Holding
  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Liver / diagnostic imaging
  • Magnetic Resonance Imaging* / methods
  • Phantoms, Imaging