Several herbivorous caterpillars contain effectors in their oral secretions that alter the emission of green leaf volatiles (GLVs) produced by the plants upon which the caterpillars are feeding. These effectors include an isomerase, a fatty acid dehydratase (FHD), and a heat-stable hexenal trapping (HALT) molecule. GLVs serve as signaling compounds in plant-insect interactions and inter-and intra-plant communication. However, it is not known whether these GLV-altering effectors are common among herbivorous caterpillars, or the evolutionary context of these effectors in relation to GLV emission by host plants in response to feeding damage. Here, we examined the distribution and activity of the isomerase, FHD, and HALT effectors across 10 species spanning 7 lepidopteran families. Six of the 10 species possessed all three effectors in their oral secretions. Activity from the HALT and FHD effectors was observed in all examined caterpillar species, while activity from the isomerase effector varied in some species and was absent in others. There was no discernable pattern in effector activity based on evolutionary divergence, since individual species within a family did not possess similar mechanisms to alter GLV emission. These data, demonstrating the GLV-altering effectors acting at different steps in the GLV biosynthetic pathway and present in the examined caterpillar species at different combinations with different activities, highlight the importance of these effectors in changing the emission of these compounds during caterpillar herbivory. Understanding the prevalence and roles of GLV-altering effectors and GLV emission itself will open new research areas in the dynamics of plant-insect interactions.
Keywords: Green leaf volatiles; Insect effectors; Oral secretions; Plant-insect interactions.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.