Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer

J Appl Clin Med Phys. 2022 Feb;23(2):e13470. doi: 10.1002/acm2.13470. Epub 2021 Nov 22.

Abstract

Objectives: Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers.

Methods: Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected. A DL tool based on VB-Net was developed to delineate CTVs of the pelvic lymph drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiotherapy group. The training/validation/test number is 157/20/23. CTV of the pelvic lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy group. The training/validation/test number is 272/30/33. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were used to evaluate the contouring accuracy. Contouring times were recorded for efficiency comparison.

Results: The mean DSC, MSD, and HD values for our DL-based tool were 0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and 0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for 63.5% of auto-segmentations to meet the clinical requirements. The contouring accuracy of the DL-based tool was comparable to that of senior radiation oncologists and was superior to that of junior/intermediate radiation oncologists. Additionally, DL assistance improved the performance of junior radiation oncologists for dCTV2 and pCTV1 contouring (mean DSC increases: 0.20 for dCTV2, 0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min for pCTV1).

Conclusions: DL-based auto-segmentation improves CTV contouring accuracy, reduces contouring time, and improves clinical efficiency for treating cervical cancer.

Keywords: artificial intelligence (AI); auto-segmentation; cervical cancer; clinical target volume (CTV); deep learning.

MeSH terms

  • Algorithms
  • Deep Learning*
  • Female
  • Humans
  • Organs at Risk
  • Radiotherapy Planning, Computer-Assisted
  • Uterine Cervical Neoplasms* / diagnostic imaging
  • Uterine Cervical Neoplasms* / radiotherapy