Photoinduced Delamination of Metal-Organic Framework Thin Films by Spatioselective Generation of Reactive Oxygen Species

ACS Appl Mater Interfaces. 2021 Dec 8;13(48):57768-57773. doi: 10.1021/acsami.1c16173. Epub 2021 Nov 22.

Abstract

Metal-organic frameworks (MOFs) built from different building units offer functionalities going far beyond gas storage and separation. In connection with advanced applications, e.g., in optoelectronics, hierarchical MOF-on-MOF structures fabricated using sophisticated methodologies have recently become particularly attractive. Here, we demonstrate that the structural complexity of MOF-based architectures can be further increased by employing highly spatioselective photochemistry. Using a layer-by-layer, quasi-epitaxial synthesis method, we realized a photoactive MOF-on-MOF hetero-bilayer consisting of a porphyrinic bottom layer and a tetraphenylethylene (TPE)-based top layer. Illumination of the monolithic thin film with visible light in the presence of oxygen gas results in the generation of reactive oxygen species (1O2) in the porphyrinic bottom layer, which lead to a photocleavage of the TPE units at the internal interface. We demonstrate that this spatioselective photochemistry can be utilized to delaminate the top layers, yielding two-dimensional (2D) MOF sheets with well-defined thickness. Experiments using atomic force microscopy (AFM) demonstrate that these platelets can be transferred onto other substrates, thus opening up the possibility of fabricating planar MOF structures using photolithography.

Keywords: heterostructure; metal−organic frameworks; photochemistry; porphyrin; singlet oxygen.