The unfolded protein response is activated by UVB irradiation, but the role of a key mediator, IRE1α, is not clear. In this study, we show that mice with an epidermal IRE1α deletion are sensitized to UV with increased apoptosis, rapid loss of UV-induced cyclopyrimidine dimer‒positive keratinocytes, and sloughing of the epidermis. In vitro, Ire1α-deficient keratinocytes have increased UVB sensitivity, reduced cyclopyrimidine dimer repair, and reduced accumulation of γH2AX and phosphorylated ATR, suggesting defective activation of nucleotide excision repair. Knockdown of XBP1 or pharmacologic inhibition of the IRE1α ribonuclease did not phenocopy Ire1α deficiency. The altered UV response was linked to elevated intracellular calcium levels and ROS, and this was due to dysregulation of the endoplasmic reticulum calcium channel InsP3R. Pharmacologic, genetic, and biochemical studies linked the regulation of the Ins3PR, intracellular calcium, and normal UV DNA damage response to CIB1 and the IRE1α‒TRAF2‒ASK1 complex. These results suggest a model where IRE1α activation state drives CIB1 binding either to the InsP3R or ASK1 to regulate endoplasmic reticulum calcium efflux, ROS, and DNA repair responses after UV irradiation.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.