Genome-wide association studies (GWASs) have identified more than 200 prostate cancer (PrCa) risk regions, which provide potential insights into causal mechanisms. Multiple lines of evidence show that a significant proportion of PrCa risk can be explained by germline causal variants that dysregulate nearby target genes in prostate-relevant tissues, thus altering disease risk. The traditional approach to explore this hypothesis has been correlating GWAS variants with steady-state transcript levels, referred to as expression quantitative trait loci (eQTLs). In this work, we assess the utility of chromosome conformation capture (3C) coupled with immunoprecipitation (HiChIP) to identify target genes for PrCa GWAS risk loci. We find that interactome data confirm previously reported PrCa target genes identified through GWAS/eQTL overlap (e.g., MLPH). Interestingly, HiChIP identifies links between PrCa GWAS variants and genes well-known to play a role in prostate cancer biology (e.g., AR) that are not detected by eQTL-based methods. HiChIP predicted enhancer elements at the AR and NKX3-1 prostate cancer risk loci, and both were experimentally confirmed to regulate expression of the corresponding genes through CRISPR interference (CRISPRi) perturbation in LNCaP cells. Our results demonstrate that looping data harbor additional information beyond eQTLs and expand the number of PrCa GWAS loci that can be linked to candidate susceptibility genes.
Keywords: CRISPRi; GWAS; HiChIP; PrCa risk loci; eQTL.
Copyright © 2021. Published by Elsevier Inc.