Objective: To determine the optimal 2-[18F]FDG-PET/MRI imaging protocol for the initial staging of patients with suspected or confirmed multiple myeloma.
Methods: Radiologists and nuclear medicine specialists reviewed all PET/MRI exams of 104 patients with a monoclonal gammopathy (MG). The presence of focal and diffuse bone marrow involvement (BMI) was assessed using 4 different image datasets: WB-MRI, PET, WB-PET/MRI, and WB-DCE-PET/MRI. A reference standard was established by a panel review of all baseline and follow-up imaging, and biological and pathological information. The diagnostic performance for each image dataset to detect BMI was evaluated and compared (Fisher's exact test).
Results: Sensitivity, specificity, and accuracy for focal BMI of WB-MRI was 87%, 97%, and 92%; of PET was 78%, 97%, and 95%; of WB-PET/MRI was 93%, 97%, and 95%; and of WB-DCE-PET/MRI was 93%, 97%, and 95%, respectively. WB-PET/MRI and WB-DCE-PET/MRI were statistically superior to PET (p = 0.036) without decreasing specificity. The sensitivity, specificity, and accuracy of WB-MRI for diffuse BMI detection was 91%, 80%, and 85%; of 3DT1-PET was 53%, 89%, and 74%; of WB-PET/MRI was 98%, 66%, and 79%; and of WB-DCE-PET/MRI was 98%, 59%, and 75%, respectively. PET lacked sensitivity compared to all other dataset studies (p < 0.0001). WB-MRI had the best accuracy without reaching statistical significance when compared to the other datasets.
Conclusion: The WB-PET/MRI dataset including T1 and T2 Dixon, WB-DWI, and PET images provides optimal diagnostic performance to detect both focal lesions and diffuse BMI, with limited added value of WB-DCE for baseline staging of patients with MG. Key Points • The combination of morphological and functional MRI sequences and metabolic (2-[18F]FDG-PET) images increases the diagnostic performance of PET/MRI to detect focal bone lesions. • The adjunction of dynamic contrast-enhanced sequences did not improve diagnostic performance.
Keywords: Diffusion magnetic resonance imaging; Multimodal imaging; Multiple myeloma; Positron-emission tomography.
© 2021. The Author(s), under exclusive licence to European Society of Radiology.