Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling

Biophys J. 2022 Jan 4;121(1):102-118. doi: 10.1016/j.bpj.2021.11.2889. Epub 2021 Dec 1.

Abstract

Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actins* / metabolism
  • Cell Surface Extensions
  • Myosin Type II* / metabolism
  • Signal Transduction

Substances

  • Actins
  • Myosin Type II