New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination

ChemSusChem. 2022 Jan 21;15(2):e202102136. doi: 10.1002/cssc.202102136. Epub 2021 Dec 18.

Abstract

Development of efficient carbon capture-and-release technologies with minimal energy input is a long-term challenge in mitigating CO2 emissions, especially via CO2 chemisorption driven by engineered chemical bond construction. Herein, taking advantage of the structural diversity of ionic liquids (ILs) in tuning their physical and chemical properties, precise reaction energy regulation of CO2 chemisorption was demonstrated deploying metal-ion-amino-based ionic liquids (MAILs) as absorbents. The coordination ability of different metal sites (Cu, Zn, Co, Ni, and Mg) to amines was harnessed to achieve fine-tuning on stability constants of the metal ion-amine complexes, acting as the corresponding cations in the construction of diverse ILs coupled with CO2 -philic anions. The as-afforded MAILs exhibited efficient and controllable CO2 release behavior with great reduction in energy input and minimal sacrifice on CO2 uptake capacity. This coordination-regulated approach offers new prospects for the development of ILs-based systems and beyond towards energy-efficient carbon capture technologies.

Keywords: CO2 chemisorption; carbon capture; ionic liquids; metal-ion coordination; stability constant.

MeSH terms

  • Amines
  • Anions
  • Carbon
  • Carbon Dioxide
  • Ionic Liquids*

Substances

  • Amines
  • Anions
  • Ionic Liquids
  • Carbon Dioxide
  • Carbon