Actophorin, a protein that severs actin filaments isolated from the amoeba Acanthamoeba castellanii, was employed as a test case for crystallization under microgravity. Crystals of purified actophorin were grown under microgravity conditions aboard the International Space Station (ISS) utilizing an interactive crystallization setup between the ISS crew and ground-based experimenters. Crystals grew in conditions similar to those grown on earth. The structure was solved by molecular replacement at a resolution of 1.65 Å. Surprisingly, the structure reveals conformational changes in a remote β-turn region that were previously associated with actophorin phosphorylated at the terminal residue Ser1. Although crystallization under microgravity did not yield a higher resolution than crystals grown under typical laboratory conditions, the conformation of actophorin obtained from solving the structure suggests greater flexibility in the actophorin β-turn than previously appreciated and may be beneficial for the binding of actophorin to actin filaments.
Keywords: Acanthamoeba castellanii; actin; actophorin; cofilin; conformational change; microgravity.