Background: micro-RNAs (miRNAs) are stable, small, non-coding RNAs enriched in exosomes. Their variation in levels according to different disease etiologies have made them a promising diagnostic biomarker for neurodegenerative diseases such as Alzheimer's disease (AD). Altered expression of miR-320a, miR-328-3p, and miR-204-5p have been reported in AD and frontotemporal dementia (FTD).
Objective: To determine their reliability, we aimed to examine the expression of three exosomal miRNAs isolated from cerebrospinal fluid (CSF) of patients with young-onset AD and FTD (< 65 years), correlating with core AD biomarkers and cognitive scores.
Methods: Exosomes were first isolated from CSF samples of 48 subjects (8 controls, 28 AD, and 12 FTD), followed by RNA extraction and quantitative PCR to measure the expression of miR-320a, miR-328-3p, and miR-204-5p.
Results: Expression of all three markers (miR-320a (p = 0.005), miR-328-3p (p = 0.049), and miR-204-5p (p = 0.036)) were significantly lower in AD versus controls. miR-320a was reduced in FTD versus controls (p = 0.049) and miR-328-3p was lower in AD versus FTD (p = 0.054). Notably, lower miR-328-3p levels could differentiate AD from FTD and controls with an AUC of 0.702, 95% CI: 0.534- 0.870, and showed significant correlation with lower CSF Aβ42 levels (r = 0.359, p = 0.029). Pathway enrichment analysis identified potential targets of miR-328-3p implicated in the AMPK signaling pathway linked to amyloid-β and tau metabolism in AD.
Conclusion: Overall, we demonstrated miR-320a and miR-204-5p as reliable biomarkers for AD and FTD and report miR-328-3p as a novel AD biomarker.
Keywords: Alzheimer’s disease; biomarker; cerebrospinal fluid; exosome; frontotemporal dementia; miRNAs; young-onset Alzheimer’s disease.
© 2021 – The authors. Published by IOS Press.