This paper examines the alterations in the properties of II-VI Quantum Dots (QDs) when these are coated with a shell made of another material of the same family and investigates the structural, electronic and magnetic properties of doped CdS/ZnS core/shell QDs. The core/shell QDs have been constructed by building the shell over the bare core QD and it is found that this construction of a shell over the bare QD can bring about dramatic changes in its optical properties. On changing the shell by varying either the cation or the anion, substantial variations are brought about in the band gap and electrophilicity. The trend of Fermi energies is more negative for core/shell QDs than for the QDs without a shell, and the value is almost the same for core/shell QDs with the same core. Swapping of the core and the shell materials brings greater stability in the case of shells of the wider band gap materials. Binding energy data demonstrates that the CdS/ZnS, CdSe/ZnSe, CdSe/CdS core/shell systems are more stable than ZnS/CdS, ZnSe/CdSe, CdS/CdSe core/shell systems, respectively. An augmentation in the properties is found on doping the QD with transition metal ions. The binding energies are found to be functions of the kind of dopant as well as the spin multiplicity and account for the stability of one spin state over the other at a specific site of the QD. The most fascinating property that plays a decisive role in the extant work is the introduction of magnetism in core/shell QDs as a result of the entry of unpaired electrons within the CdS/ZnS QDs on doping with transition metal ions. The deviation of the observed magnetic moments from the expected values increases as the dopant is varied from Mn2+ to Fe2+ to Co2+ to Ni2+ to Cu2+. Hirshfeld charge analysis shows that the doped ion accepts negative charge from the sulfide ions in the core, with the smallest charge transfer seen in the case of Hg2+ ions. As we move from Mn2+ to Hg2+, the trend followed for the Hirshfeld charges indicates that the overall charge on the core is lower and that on the shell is higher for all the doped cases in comparison to the undoped CdS/ZnS core/shell QD. The band gap values reveal that the Fe2+ doped CdS/ZnS core/shell structures have the smallest band gaps. Hence, we expect that this paper will help researchers to develop a strategy to produce QDs of the anticipated properties for various applications, and transition metal ions can be successfully employed for modification of various magnetoelectronic properties of the host semiconductor for future applications in nanotechnology.
Keywords: Core/shell; Doping; Electronic; Fermi energy; Hirshfeld charges; Magnetic; Quantum dots; Structural; Transition metal ions.
Copyright © 2021. Published by Elsevier Inc.