Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling

Curr Biol. 2022 Feb 7;32(3):497-507.e4. doi: 10.1016/j.cub.2021.11.030. Epub 2021 Dec 6.

Abstract

Sensing and signaling of cell wall status and dynamics regulate many processes in plants, such as cell growth and morphogenesis, but the underpinning mechanisms remain largely unknown. Here, we demonstrate that the CrRLK1L receptor kinase FERONIA (FER) binds the cell wall pectin, directly leading to the activation of the ROP6 guanosine triphosphatase (GTPase) signaling pathway that regulates the formation of the puzzle piece shape of pavement cells in Arabidopsis. The extracellular malectin domain of FER binds demethylesterified pectin in vivo and in vitro. Both loss-of-FER mutations and defects in pectin demethylesterification caused similar changes in pavement cell shape and ROP6 GTPase signaling. FER is required for the activation of ROP6 by demethylesterified pectin and physically and genetically interacts with the ROP6 activator, RopGEF14. Thus, our findings elucidate a signaling pathway that directly connects the cell wall pectin to cellular morphogenesis via the cell surface receptor FER.

Keywords: FERONIA; ROP6; cell morphogenesis; cell wall; microtubule; pavement cell; pectin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • GTP Phosphohydrolases / metabolism
  • Morphogenesis
  • Pectins / metabolism
  • Phosphotransferases / metabolism
  • Signal Transduction / physiology

Substances

  • Arabidopsis Proteins
  • Pectins
  • Phosphotransferases
  • GTP Phosphohydrolases