Background: Optimal projection is essential for valve deployment during transcatheter aortic valve implantation (TAVI). The purpose of this study was to propose an approach to predict optimal projection in TAVI candidates with different aortic valve anatomies.
Methods: 331 patients undergoing self-expanding TAVI were included and the so-called non-coronary cusp (NCC)-parallel technique was utilized, which generated the predicted projection by connecting NCC commissures on the transverse plane on the pre-procedural computed tomography images.
Results: 37.8% of the study cohort were bicuspid aortic valve (BAV) patients. Around 80% of both NCC-parallel views and final views were in the right anterior oblique (RAO) and caudal (CAU) quadrant. There was less than 5° change required from the NCC-parallel view to the final implanted view in 79% of tricuspid aortic valve (TAV) patients but only in 27% (13/48) of type 0 BAV patients with coronary arteries originated from the different cusps. After excluding the above mentioned BAV patients, 62.3% (48/77) of BAV patients needed less than 5° change to achieve optimal projection and only in 8 patients, the angular change was larger than 10° in either left/right anterior oblique or cranial/caudal direction.
Conclusions: The NCC-parallel technique provides reliable prediction for optimal projection in self-expanding TAVI in all TAV and most BAV patients, with a vast majority of views in the RAO and CAU quadrant.
Keywords: Bicuspid aortic valve; MSCT; Optimal projection; TAVI.
© 2021. The Author(s).