EEG source imaging concordance with intracranial EEG and epileptologist review in focal epilepsy

Brain Commun. 2021 Nov 19;3(4):fcab278. doi: 10.1093/braincomms/fcab278. eCollection 2021.

Abstract

EEG source imaging is becoming widely used for the evaluation of medically refractory focal epilepsy. The validity of EEG source imaging has been established in several studies comparing source imaging to the surgical resection cavity and subsequent seizure freedom. We present a cohort of 87 patients and compare EEG source imaging of both ictal and interictal scalp EEG to the seizure onset zone on intracranial EEG. Concordance of EEG source imaging with intracranial EEG was determined on a sublobar level and was quantified by measuring the distance between the source imaging result and the centroid of the active seizure onset zone electrodes. The EEG source imaging results of a subgroup of 26 patients with high density 76-channel EEG were compared with the localization of three experienced epileptologists. Of 87 patients, 95% had at least one analysis concordant with intracranial EEG and 74% had complete concordance. There was a higher rate of complete concordance in temporal lobe epilepsy compared to extratemporal (89.3 and 62.8%, respectively, P = 0.015). Of the total 282 analyses performed on this cohort, higher concordance was also seen in temporal discharges (95%) compared to extratemporal (77%) (P = 0.0012), but no difference was seen comparing high-density EEG with standard (32-channel) EEG. Subgroup analysis of ictal waveforms showed greater concordance for ictal spiking, compared with rhythmic activity, paroxysmal fast activity, or obscured onset. Median distances from the dipole and maximum distributed source to a centroid of seizure onset zone electrodes were 30.0 and 32.5 mm, respectively, and the median distances from dipole and maximum distributed source to nearest seizure onset zone electrode were 22.8 and 21.7, respectively. There were significantly shorter distances in ictal spiking. There were shorter distances in patients with Engel Class 1 outcome from surgical resection compared to patients with worse outcomes. For the subgroup of 26 high-density EEG patients, EEG source localization had a significantly higher concordance (92% versus 65%), sensitivity (57% versus 35%) and positive predictive value (60% versus 36%) compared with epileptologist localization. Our study demonstrates good concordance between ictal and interictal source imaging and intracranial EEG. Temporal lobe discharges have higher concordance rates than extratemporal discharges. Importantly, this study shows that source imaging has greater agreement with intracranial EEG than visual review alone, supporting its role in surgical planning.

Keywords: EEG source imaging; epilepsy surgery; intracranial EEG; source localization.