Inhibition of the 14q32 microRNAs, miR-329-3p and miR-495-3p, improves post-ischemic neovascularization. Cold-inducible RNA-binding protein (CIRBP) facilitates maturation of these microRNAs. We hypothesized that CIRBP deficiency improves post-ischemic angiogenesis via downregulation of 14q32 microRNA expression. We investigated these regulatory mechanisms both in vitro and in vivo. We induced hindlimb ischemia in Cirp-/- and C57Bl/6-J mice, monitored blood flow recovery with laser Doppler perfusion imaging, and assessed neovascularization via immunohistochemistry. Post-ischemic angiogenesis was enhanced in Cirp-/- mice by 34.3% with no effects on arteriogenesis. In vivo at day 7, miR-329-3p and miR-495-3p expression were downregulated in Cirp-/- mice by 40.6% and 36.2%. In HUVECs, CIRBP expression was upregulated under hypothermia, while miR-329-3p and miR-495-3p expression remained unaffected. siRNA-mediated CIRBP knockdown led to the downregulation of CIRBP-splice-variant-1 (CIRBP-SV1), CIRBP antisense long noncoding RNA (lncRNA-CIRBP-AS1), and miR-495-3p with no effects on the expression of CIRBP-SV2-4 or miR-329-3p. siRNA-mediated CIRBP knockdown improved HUVEC migration and tube formation. SiRNA-mediated lncRNA-CIRBP-AS1 knockdown had similar long-term effects. After short incubation times, however, only CIRBP knockdown affected angiogenesis, indicating that the effects of lncRNA-CIRBP-AS1 knockdown were secondary to CIRBP-SV1 downregulation. CIRBP is a negative regulator of angiogenesis in vitro and in vivo and acts, at least in part, through the regulation of miR-329-3p and miR-495-3p.
Keywords: 14q32 microRNAs; CIRBP; HUVECs; angiogenesis; peripheral arterial disease.