Recently, with the development of figure-of-merit non-fullerene acceptor materials combined with a ternary strategy and layer-by-layer (LbL) processing, the efficiency of single-junction organic solar cells has exceeded 18%. However, the structural properties of LbL-processed films have not been sufficiently elucidated. Herein, we systematically investigate films fabricated via LbL processing of three different systems, including a ternary system. In particular, we focus on the structural and morphological transitions associated with the diffusion process controlled by thermal annealing and an additive solvent. Different diffusion and crystal formation mechanisms were clearly identified, which were observed to be dependent on the characteristics of the upper layer formed during the LbL process. Based on this insight, the photovoltaic properties associated with various LbL conditions are elucidated, and an ideal path toward a better device is suggested.
Keywords: layer-by-layer; non-fullerene acceptor; sequential process; structure; vertical distribution.