The Dopamine D1 Receptor Positive Allosteric Modulator Mevidalen (LY3154207) Enhances Wakefulness in the Humanized D1 Mouse and in Sleep-Deprived Healthy Male Volunteers

J Pharmacol Exp Ther. 2022 Mar;380(3):143-152. doi: 10.1124/jpet.121.000719. Epub 2021 Dec 10.

Abstract

Dopamine (DA) plays a key role in several central functions including cognition, motor activity, and wakefulness. Although efforts to develop dopamine receptor 1 (D1) agonists have been challenging, a positive allosteric modulator represents an attractive approach with potential better drug-like properties. Our previous study demonstrated an acceptable safety and tolerability profile of the dopamine receptor 1 positive allosteric modulator (D1PAM) mevidalen (LY3154207) in single and multiple ascending dose studies in healthy volunteers (Wilbraham et al., 2021). Herein, we describe the effects of mevidalen on sleep and wakefulness in humanized dopamine receptor 1 (hD1) mice and in sleep-deprived healthy male volunteers. Mevidalen enhanced wakefulness (latency to fall asleep) in the hD1 mouse in a dose dependent [3-100 mg/kg, orally (PO)] fashion when measured during the light (zeitgeber time 5) and predominantly inactive phase. Mevidalen promoted wakefulness in mice after prior sleep deprivation and delayed sleep onset by 5.5- and 15.2-fold compared with vehicle-treated animals, after the 20 and 60 mg/kg PO doses, respectively, when compared with vehicle-treated animals. In humans, mevidalen demonstrated a dose-dependent increase in latency to sleep onset as measured by the multiple sleep latency test and all doses (15, 30, and 75 mg) separated from placebo at the first 2-hour postdose time point with a circadian effect at the 6-hour postdose time point. Sleep wakefulness should be considered a translational biomarker for the dopamine receptor 1 positive allosteric modulator mechanism. SIGNIFICANCE STATEMENT: This is the first translational study describing the effects of a selective dopamine receptor 1 positive allosteric modulator (D1PAM) on sleep and wakefulness in the human dopamine receptor 1 mouse and in sleep-deprived healthy male volunteers. In both species, drug exposure correlated with sleep latency, supporting the use of sleep-wake activity as a translational central biomarker for D1PAM. Wake-promoting effects of D1PAMs may offer therapeutic opportunities in several conditions, including sleep disorders and excessive daytime sleepiness related to neurodegenerative disorders.

MeSH terms

  • Animals
  • Healthy Volunteers
  • Humans
  • Isoquinolines
  • Male
  • Mice
  • Neuroprotective Agents* / pharmacology
  • Receptors, Dopamine D1
  • Sleep / physiology
  • Wakefulness*

Substances

  • Isoquinolines
  • LY3154207
  • Neuroprotective Agents
  • Receptors, Dopamine D1