Objective: This study aims to develop and compare the use of deep neural networks (DNN) and support vector machines (SVM) to clinical prognostic scores for prognosticating 30-day mortality and 90-day poor functional outcome (PFO) in spontaneous intracerebral haemorrhage (SICH).
Materials and methods: We conducted a retrospective cohort study of 297 SICH patients between December 2014 and May 2016. Clinical data was collected from electronic medical records using standardized data collection forms. The machine learning workflow included imputation of missing data, dimensionality reduction, imbalanced-class correction, and evaluation using cross-validation and comparison of accuracy against clinical prognostic scores.
Results: 32 (11%) patients had 30-day mortality while 177 (63%) patients had 90-day PFO. For prognosticating 30-day mortality, the class-balanced accuracies for DNN (0.875; 95% CI 0.800-0.950; McNemar's p-value 1.000) and SVM (0.848; 95% CI 0.767-0.930; McNemar's p-value 0.791) were comparable to that of the original ICH score (0.833; 95% CI 0.748-0.918). The c-statistics for DNN (0.895; DeLong's p-value 0.715), and SVM (0.900; DeLong's p-value 0.619), though greater than that of the original ICH score (0.862), were not significantly different. For prognosticating 90-day PFO, the class-balanced accuracies for DNN (0.853; 95% CI 0.772-0.934; McNemar's p-value 0.003) and SVM (0.860; 95% CI 0.781-0.939; McNemar's p-value 0.004) were better than that of the ICH-Grading Scale (0.706; 95% CI 0.600-0.812). The c-statistic for SVM (0.883; DeLong's p-value 0.022) was significantly greater than that of the ICH-Grading Scale (0.778), while the c-statistic for DNN was 0.864 (DeLong's p-value 0.055).
Conclusion: We showed that the SVM model performs significantly better than clinical prognostic scores in predicting 90-day PFO in SICH.
Keywords: Artificial intelligence; Cerebrovascular disease; Deep neural network; Haemorrhagic stroke; Machine learning; Mortality; Prognosis; Support vector machine.
Copyright © 2021 Elsevier Inc. All rights reserved.