While the close relationship between the brain system for speech processing and reading development is well-documented in alphabetic languages, whether and how such a link exists in children in a language without systematic grapheme-phoneme correspondence has not been directly investigated. In the present study, we measured Chinese children's brain activation during an auditory lexical decision task with functional magnetic resonance imaging. The results showed that brain areas distributed across the temporal and frontal lobes activated during spoken word recognition. In addition, the left occipitotemporal cortex (OTC) was recruited, especially under the real word condition, thus confirming the involvement of this orthographic-related area in spoken language processing in Chinese children. Importantly, activation of the left temporoparietal cortex (TPC) in response to words and pseudowords was positively correlated with children's reading ability, thus supporting the salient role phonological processing plays in Chinese reading in the developing brain. Furthermore, children with higher reading scores also increasingly recruited the left anterior OTC to make decisions on the lexical status of pseudowords, indicating that higher-skill children tend to search abstract lexical representations more deeply than lower-skill children in deciding whether spoken syllables are real. In contrast, the precuneus was more related to trial-by-trial reaction time in lower-skill children, suggesting that effort-related neural systems differ among pupils with varying reading abilities. Taken together, these findings suggest a strong link between the neural correlates of speech processing and reading ability in Chinese children, thus supporting a universal basis underlying reading development across languages.
Keywords: auditory word recognition; functional magnetic resonance imaging; individual differences; occipitotemporal cortex; reading ability; temporoparietal cortex.
© 2021 John Wiley & Sons Ltd.