Craniofacial phenomics has opened up numerous opportunities to correlate genetic and epigenetic factors to craniofacial phenotypes in order to improve our understanding of growth and development in health and disease. Three-dimensional (3D) imaging has played a key role in advancing craniofacial phenomics by facilitating highly sensitive and specific characterizations of craniofacial and dental morphology. Here we describe the use of micro-computed tomography (micro-CT) to image the murine craniofacial complex, followed by surface reconstruction for traditional morphometric analyses. We also describe the application of geometric morphometrics, based on Generalized Procrustes Analysis, for use in human premolars. These principles are interchangeable between various vertebrate species, and between various surface imaging techniques (including micro-CT and 3D surface scanners), offering a high level of versatility and precision for extensive phenotyping of the entire craniofacial complex.
Keywords: 3D reconstruction; 3D segmentation; Cranium; Mandible; Maxilla; Midface; Morphometrics; Teeth; micro-CT; nano-CT.
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.