Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: Signal transduction between PI3K/AKT/GSK-3β/mTOR and Wnt/β-catenin pathways; in vitro

J Cancer Res Ther. 2021 Oct-Dec;17(6):1404-1418. doi: 10.4103/jcrt.JCRT_963_19.

Abstract

Background and objectives: Metabolic shifting from mitochondrial respiration to glycolysis characterizes malignant cells from its normal counterparts and is attributed to overactivation of oncogenic signaling pathways. Hence, this study intended to investigate the influence of canagliflozin (CAN) and/or γ-irradiation (γ-IR) on HepG2 cell proliferation, crosstalk between phosphatidylinositol 3-kinases (PI3K)/AKT/glycogen synthase kinase-3-β (GSK3-β)/mTOR and Wnt/β-catenin signaling pathways, and their regulation of diverse processes, such as endoplasmic reticulum (ER) stress, autophagy, and apoptosis.

Materials and methods: HepG2 cells were treated with different doses of CAN and then exposed to different doses of γ-IR to achieve optimization that was based on cytotoxicity and clonogenic assays, respectively. The effects of CAN and/or γ-IR on glycolytic metabolism, cellular bioenergetics, oxidative stress, ER stress and autophagy biomarkers, expression of PI3K/AKT/GSK3-β/mTOR and Wnt/β-Catenin signaling pathways, and apoptotic markers were monitored.

Results: CAN enhanced the antitumor potential of γ-IR as displayed by a significant inhibition of clonogenic survival in HepG2 cells via inhibition of glucose uptake, lactate release, and modulation of ER stress-mediated autophagy; switched it to apoptosis; as well as disabled signaling pathways which contribute to metabolic reprogramming and tumor progression induced by γ-IR that confer radioresistance and treatment failure.

Conclusion: Our study sheds light on the effective combination of CAN and γ-IR in hepatocellular carcinoma treatment and necessitates CAN treatment prior to γ-IR to overcome metabolic reprogramming-associated radioresistance and improve curative outcomes.

Keywords: Canagliflozin; caspase-12; caspase-3; endoplasmic reticulum-stress; hepatocellular carcinoma.

MeSH terms

  • Apoptosis
  • Autophagy*
  • Canagliflozin / pharmacology*
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Carcinoma, Hepatocellular / therapy
  • Cell Proliferation
  • Chemoradiotherapy
  • Endoplasmic Reticulum Stress*
  • Gamma Rays
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Gene Expression Regulation, Neoplastic / radiation effects*
  • Glycogen Synthase Kinase 3 beta / genetics
  • Glycogen Synthase Kinase 3 beta / metabolism
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Liver Neoplasms / therapy
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Sodium-Glucose Transporter 2 Inhibitors / pharmacology
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism
  • Wnt1 Protein / genetics
  • Wnt1 Protein / metabolism
  • beta Catenin / genetics
  • beta Catenin / metabolism

Substances

  • CTNNB1 protein, human
  • Sodium-Glucose Transporter 2 Inhibitors
  • WNT1 protein, human
  • Wnt1 Protein
  • beta Catenin
  • Canagliflozin
  • MTOR protein, human
  • Glycogen Synthase Kinase 3 beta
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases