Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our "wet" screen and used "dry" machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo ("wet") and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor β pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis.
© 2021. The Author(s).