Thermal management of H2 gas storage in a tank is crucial for determining the H2 gas deliverable capacity. In this study, a strategy for the design of an excellent comprehensive performance fuel storage tank from the screening of microscopic materials to the design of macroscopic particle adsorption tank performance is proposed. The best metal-organic framework (MOF) for H2 deliverable capacity in a computation-ready experimental MOF database is first screened using a grand canonical Monte Carlo (GCMC) method. An upscale model that combines the finite volume method with GCMC is then established to investigate the H2 charging and discharging processes in a screened best MOF-filled adsorption particle tank that is integrated with a phase-change material (PCM) jacket. The process of the heat and mass transfer in the screened best MOF particle adsorption tank with and without the PCM jacket-inserted metal foam is studied. The results show that the prescreened XAWVUN has the highest gravimetric and considerable volumetric deliverable capacity among 503 MOFs, which can reach up to 23.1 mol·kg-1 and 20.8 kg·m-3 at 298 K and pressures between 35 000 kPa (adsorption pressure) and 160 kPa (desorption pressure), respectively. The H2 deliverable capacity can be maximized by 3.2 and 12.1% for PCM jackets inserted with metal foam in the H2 charging and discharging processes when it is compared with the case without the PCM jacket, respectively. The above study will facilitate the development of new equipment for hydrogen storage.
Keywords: hydrogen charging and discharging; metal foam; phase-change material; screened metal−organic frameworks; thermal management.