Electrically tunable optical devices that allow for modulation and detection of the optical signals would be extremely beneficial for the next photonic and electronic technologies. Perovskite materials as an emerging excitonic one provide promising platforms because they offer excitons manipulated by an external electrical field and efficient coupling to light. However, so far, electrically modulated switches based on perovskite amplified spontaneous emission (ASE) still remain unexplored. Here, we prepared perovskite films on indium tin oxide substrates by a spin-coating method and characterized their ASE behaviors. Based on it, we designed and fabricated electrically switchable ASE devices of perovskite film based on a light-emitting diode device configuration. Under the externally applied current, this device exhibits good controllable optoelectronic switching behaviors. Furthermore, this photoelectric response can be modulated by the different current densities. Our strategy for electrically switchable perovskite ASE will promote integrated applications in optoelectronic devices and provide valuable experience for the development of electrically pumped perovskite lasers.
© 2021 The Authors. Published by American Chemical Society.