Lethal oxidative stress and ferrous ion accumulation-mediated degeneration/death in retinal pigment epithelium (RPE) exert an indispensable impact on retinal degenerative diseases with irreversible visual impairment, especially in age-related macular degeneration (AMD), but corresponding pathogenesis-oriented medical intervention remains controversial. In this study, the potent iron-binding nanoscale Prussian blue analogue KCa[FeIII (CN)6 ] (CaPB) with high biocompatibility is designed to inhibit RPE death and subsequently photoreceptor cell degeneration. In mice, CaPB effectively prevents RPE degeneration and ultimately fulfills superior therapeutic outcomes upon a single intravitreal injection: significant rescue of retinal structures and visual function. Through high-throughput RNA sequencing and sophisticated biochemistry evaluations, the findings initially unveil that CaPB nanoparticles protect against RPE degradation by inhibiting ferroptotic cell fate. Together with the facile, large-scale preparations and in vivo biosafety, it is believed that the synthesized CaPB therapeutic nanoparticles are promising for future clinical treatment of diverse retinal diseases involving pathological iron-dependent ferroptosis, including AMD.
Keywords: Prussian blue analogue; age-related macular degeneration; ferroptosis; iron-binding; retinal pigment epithelium.
© 2021 Wiley-VCH GmbH.