Pleuritic chest pain from bacterial pneumonia is often reported in human medicine. However, studies investigating pain associated with bovine respiratory disease (BRD) are lacking. The objectives of this study were to assess if bacterial pneumonia elicits a pain response in calves with experimentally induced BRD and to determine the analgesic effects of transdermally administered flunixin. A total of 26 calves, 6-7 mo of age, with no history of BRD were enrolled into one of three treatment groups: 1) experimentally induced BRD + transdermal flunixin at 3.3 mg/kg twice, 24 h apart (BRD + FTD); 2) experimentally induced BRD + placebo (BRD + PLBO); and 3) sham induction + placebo (CNTL + PLBO). Calves induced with BRD were inoculated with Mannheimia haemolytica via bronchoalveolar lavage. Outcomes were collected from -48 to 192 h post-treatment and included serum cortisol, infrared thermography, mechanical nociceptive threshold, substance P, kinematic gait analysis, visual analog scale (VAS), clinical illness score, computerized lung score, average activity and rumination level, prostaglandin E2 metabolite, plasma serum amyloid A, and rectal temperature. Outcomes were evaluated using either a generalized logistic mixed model for categorical variables or a generalized linear mixed model for continuous variables. Right front force differed by treatment (P = 0.01). The BRD + PLBO had lower mean force applied to the right front limb (85.5 kg) compared with BRD + FTD (96.5 kg; P < 0.01). Average VAS differed by a treatment by time interaction (P = 0.01). The VAS scores differed for BRD + PLBO at -48 (3.49 mm) compared with 168 and 192 h (13.49 and 13.64 mm, respectively) (P < 0.01). Activity for BRD + PLBO was higher at -48 h (27 min/h) compared with 48, 72, 120, and 168 h (≤ 22.24 min/h; P < 0.01). Activity differed by a treatment by time interaction (P = 0.01). Activity for BRD + FTD was higher at -48 and 0 h (28.2 and 28.2 min/h, respectively) compared to 48, 72, 96, and 168 h (≤23.7 min/h; P < 0.01). Results show a combination of reduced activity levels, decreased force on the right front limb, and increased VAS pain scores all support that bacterial pneumonia in cattle is painful. Differences in right front force indicate that flunixin transdermal may attenuate certain pain biomarkers in cattle with BRD. These findings suggest that BRD is painful and analgesic drugs may improve the humane aspects of care for cattle with BRD.
Keywords: BRD; biomarkers; lung lesion scores; pain.
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science.