Deep learning for Alzheimer's disease: Mapping large-scale histological tau protein for neuroimaging biomarker validation

Neuroimage. 2022 Mar:248:118790. doi: 10.1016/j.neuroimage.2021.118790. Epub 2021 Dec 20.

Abstract

Abnormal tau inclusions are hallmarks of Alzheimer's disease and predictors of clinical decline. Several tau PET tracers are available for neurodegenerative disease research, opening avenues for molecular diagnosis in vivo. However, few have been approved for clinical use. Understanding the neurobiological basis of PET signal validation remains problematic because it requires a large-scale, voxel-to-voxel correlation between PET and (immuno) histological signals. Large dimensionality of whole human brains, tissue deformation impacting co-registration, and computing requirements to process terabytes of information preclude proper validation. We developed a computational pipeline to identify and segment particles of interest in billion-pixel digital pathology images to generate quantitative, 3D density maps. The proposed convolutional neural network for immunohistochemistry samples, IHCNet, is at the pipeline's core. We have successfully processed and immunostained over 500 slides from two whole human brains with three phospho-tau antibodies (AT100, AT8, and MC1), spanning several terabytes of images. Our artificial neural network estimated tau inclusion from brain images, which performs with ROC AUC of 0.87, 0.85, and 0.91 for AT100, AT8, and MC1, respectively. Introspection studies further assessed the ability of our trained model to learn tau-related features. We present an end-to-end pipeline to create terabytes-large 3D tau inclusion density maps co-registered to MRI as a means to facilitate validation of PET tracers.

Keywords: Alzheimer's disease; Big data; Convolutional neural networks; Deep learning; Digital pathology; Histopathology; Imaging; Machine learning.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / diagnostic imaging*
  • Alzheimer Disease / metabolism*
  • Biomarkers / metabolism
  • Datasets as Topic
  • Deep Learning*
  • Equipment Design
  • Female
  • Humans
  • Imaging, Three-Dimensional
  • Magnetic Resonance Imaging
  • Male
  • Neuroimaging / methods*
  • Photomicrography / instrumentation
  • Tomography, X-Ray Computed
  • tau Proteins / metabolism*

Substances

  • Biomarkers
  • tau Proteins