While anomalous Hall effect (AHE) has been extensively studied in the past, efforts for realizing large Hall response have been mainly limited within intrinsic mechanism. Lately, however, a theory of extrinsic mechanism has predicted that magnetic scattering by spin cluster can induce large AHE even above magnetic ordering temperature, particularly in magnetic semiconductors with low carrier density, strong exchange coupling, and finite spin chirality. Here, we find out a new magnetic semiconductor EuAs, where Eu2+ ions with large magnetic moments form distorted triangular lattice. In addition to colossal magnetoresistance, EuAs exhibits large AHE with an anomalous Hall angle of 0.13 at temperatures far above antiferromagnetic ordering. As also demonstrated by model calculations, observed AHE can be explained by the spin cluster scattering in a hopping regime. Our findings shed light on magnetic semiconductors hosting topological spin textures, developing a field targeting diluted carriers strongly coupled to noncoplanar spin structures.