Structural and functional diversity among agonist-bound states of the GLP-1 receptor

Nat Chem Biol. 2022 Mar;18(3):256-263. doi: 10.1038/s41589-021-00945-w. Epub 2021 Dec 22.

Abstract

Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Exenatide
  • Glucagon-Like Peptide 1* / metabolism
  • Glucagon-Like Peptide-1 Receptor* / chemistry
  • Peptides / chemistry
  • Protein Domains

Substances

  • Glucagon-Like Peptide-1 Receptor
  • Peptides
  • Glucagon-Like Peptide 1
  • Exenatide