The fiber Bragg grating (FBG) may be viewed as a one dimensional photonic band-gap crystal by virtue of the periodic spatial perturbation imposed on the fiber core dielectric material. Similar to media supporting Bloch waves, the engraved weak index modulation, presenting a periodic "potential" to an incoming guided mode photon of the fiber, yields useful spectral properties that have been the basis for sensing applications and emerging quantum squeezing and solitons. The response of an FBG sensor to arbitrary external stimuli represents a multiphysics problem without a known analytical solution despite the growing use of FBGs in classical and quantum sensing and metrology. Here, we study this problem by first presenting a solid mechanics model for the thermal and elastic states of a stratified material. The model considers an embedded optical material domain that represents the Bragg grating, here in the form of an FBG. Using the output of this model, we then compute the optical modes and their temperature- and stress-induced behavior. The developed model is applicable to media of arbitrary shape and composition, including soft matter and materials with nonlinear elasticity and geometric nonlinearity. Finally, we employ the computed surface stress and temperature distributions along the grating to analytically calculate the Bragg shift, which is found to be in reasonable agreement with our experimental measurements.